Авторы |
Алимурадов Алан Казанферович, кандидат технических наук, директор студенческого научно-производственного бизнес-инкубатора, Пензенский государственный университет (Россия, г. Пенза,
ул. Красная, 40), alansapfir@yandex.ru
Тычков Александр Юрьевич, кандидат технических наук, заместитель директора, Научно-исследовательский институт фундаментальных и прикладных исследований, Пензенский государственный университет (Россия, г. Пенза, ул. Красная, 40), tychkov-a@mail.ru
Чураков Петр Павлович, доктор технических наук, профессор, кафедра информационно-измерительнойтехники и метрологии, Пензенский государственный университет (Россия, г. Пенза, ул. Красная, 40), ivan@pniei.penza.ru
Торгашин Сергей Иванович, кандидат технических наук, заведующий кафедрой ракетно-космического и авиационного приборостроения, Пензенский государственный университет (Россия, г. Пенза, ул. Красная, 40), rkap@pnzgu.ru
|
Список литературы |
1. Bachu, R. G. Separation of Voiced and Unvoiced Using Zero Crossing Rate and Energy of the Speech Signal / R. G. Bachu, S. Kopparthi, B. Adapa, B. D. Barkana // American Society for Engineering Education (ASEE) Zone Conference Proceedings. – Pittsburgh, USA, 2008. – P. 1–7.
2. Moattar, M. H. A simple but efficient real-time voice activity detection algorithm / M. H. Moattar, M. M. Homayounpour // EUSIPCO-2009 : 17-th European Signal Processing Conference, Glasgow, Scotland, August 24–28, 2009. – Glasgow, Scotland, 2009. – P. 2549–2553.
3. Huaping, L. Speech endpoint detection based on improved adaptive bandpartitioning spectral entropy / Liu HuaPing, Li Xin // J. System Simulation. – 2008. – P. 51–59.
4. Mattias, N. Entropy and Speech / N. Mattias // Sound and Image Processing Laboratory School of Electrical Engineering KTH (Royal Institute of Technology). – Stockholm, 2006. – 54 p.
5. Ma Jingxia Research on Noisy Voice Activity Detection Method [D]. – Yanshan : Yanshan University, 2007.
6. Jancovic, P. Estimation of Voicing-Character of Speech Spectra Based on Spectral Shape / P. Jancovic, M. Kokuer // IEEE Signal Processing Letters. – 2006. – Vol. 14, iss. 1. – P. 66–69.
7. Ahmadi, S. Cepstrum-Based Pitch Detection Using a New Statistical V/UV Classification Algorithm / S. Ahmadi, A.S. Spanias // IEEE Transactions on Speech and Audio Processing. – 2002. – Vol. 7, iss. 3. – P. 333–338.
8. Shah, J. K. Robust Voiced/Unvoiced Classification Using Novel Features and Gaussian Mixture Model / J. K. Shah, A. N. Iyer, B. Y. Smolenski, R. E. Yantorno // IEEE International Conference on Acoustics, Speech, and Signal Processin. – Philadelphia, 2004. – P. 17–21.
9. Saha, G. A New Silence Removal and Endpoint Detection Algorithm for Speech and Speaker Recognition Applications / G. Saha, Ch. Sandipan, S. Suman // Proceedings of the NCC 2005. – 2005. – Jan. – P. 5.
10. Rahman, M. S. Pitch Determination Using Autocorrelation Function in Spectral Domain / M. S. Rahman, T. Shimamura // Eleventh Annual Conference of the International Speech Communication Association.– Makuhar, 2010. – P. 653–656.
11. Juang, C. F. Speech detection in noisy environments by wavelet energy-based recurrent neural fuzzy network / Juang Chia Feng, Cheng Chun Nan // Expert Systems with Applications. – 2009. – Vol. 1. – P. 321–332.
12. Noise-Robust Algorithm for "Speech/Pause" Segmentation in Diagnostic Systems of Psychogenic States / A. K. Alimuradov, A. Yu. Tychkov, P. P. Churakov, Yu. S. Kvitka, A. P. Zaretskiy, G. V. Vishnevskaya // 2016 International Conference on Engineering and Telecommunication (EnT), Nov. 29–30, 2016. – Moscow, Russia, 2016. – P. 3–6. DOI: 10.1109/EnT.2016.009.
13. Yeh, J.-R. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method / J.-R. Yeh, J.-S. Shieh, and N. E. Huang // Advances in Adaptive Data Analysis. – 2010. – Vol. 2, № 2. – P. 135–156. DOI: 10.1142/ S1793536910000422.
14. Sarma, V. Studies on pattern recognition approach to voiced-unvoiced-silence classification / V. Sarma, D. Venugopal // ICASSP '78. IEEE International Conference on Acoustics, Speech, and Signal Processing. – 1978. – Vol. 3, Apr. – P. 1–4.
15. Improvement of the Efficiency of Voice Control Based on the Complementary Ensemble Empirical Mode Decomposition / A. K. Alimuradov, P. P. Churakov, A. Yu. Tychkov, I. I. Artemov, A. V. Kuzmin // International Siberian Conference on Control and Communications (SIBCON 2016), May 12–14, 2016. – Moscow, Russia, 2016. – P. 6. DOI: 10.1109/SIBCON.2016.7491754.
16. Alimuradov, A. K. Methods to Improve the Efficiency of Recognition of Speech Signals in Voice Control Systems / A. K. Alimuradov, F. Sh. Murtazov // Measurement techniques. – 2016. – Vol. 58, iss. 10. – P. 1107–1112. DOI 10.1007/s11018-015-0850-8.
17. Tychkov, A. Yu. Program Implementation of an Algorithm for Recognition of Speech Signals in the Labview Graphics Programming Environment / A. Yu. Tychkov, A. K. Alimuradov, M. V. Frantsuzov, P. P. Churakov // Measurement techniques. – 2015. – Vol. 58, iss. 9. – P. 965–969. DOI 10.1007/s11018-015-0826-8.
18. Попов, Д. И. Оптимизация цифровых систем обработки сигналов / Д. И. Попов // Известия высших учебных заведений. Поволжский регион. Технические науки. – 2017. – № 1 (41). – C. 96–105.
19. Рабинер, Л. Р. Цифровая обработка речевых сигналов : пер. с англ. / Л. Р. Рабинер, Р. В. Шафер. – М. : Радио и связь, 1981. – 496 c.
20. Analysis of heart rate variability with temporary ventricular pacing / A. Kuleshov, A. Zaretskiy, A. Ilyin, A. Poteryakhina, A. Poteryakhin // Iranian Hear Journal. – 2015. – Vol. 16, № 2. – P. 41–53.
|